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Abstract
Non-commutative quantum mechanics can be viewed as a quantum system
represented in the space of Hilbert–Schmidt operators acting on non-
commutative configuration space. Within this framework, an unambiguous
definition can be given for the non-commutative well. Using this approach,
we compute the bound state energies, phase shifts and scattering cross-sections
of the non-commutative well. As expected, the results are very close to the
commutative results when the well is large or the non-commutative parameter
is small. However, the convergence is not uniform, and phase shifts at
certain energies exhibit a much stronger than expected dependence on the
non-commutative parameter even at small values.

PACS number: 11.10.Nx

1. Introduction

The idea of non-commutative spacetime was first formally introduced by Snyder in [1] as
an attempt to regulate the divergences of quantum field theories. However, the discovery
of renormalizable field theories pushed these ideas to the background until the difficulties
encountered in the unification of gravity and quantum mechanics forced us to reconsider these
ideas. Indeed, strong arguments in favor of non-commutative spacetime were given much
more recently in [2], and further support for non-commutative geometry came from string
theory [3].

These observations led to a flurry of activity on non-commutative quantum field theories
[4] and the possible physical consequences of non-commutative spacetime in quantum
mechanics and quantum mechanical many-body systems [5–13], quantum electrodynamics
[14–16], the standard model [17] and cosmology [18, 19].

Despite this, not much attention seems to have been paid to the formal and interpretational
aspects of non-commutative quantum mechanics. Only recently were these issues addressed
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in [20], where a consistent formulation and interpretation of non-commutative quantum
mechanics were given. These ideas were already used in [21] to give precise meaning to
the concept of a non-commutative two-dimensional well and to compute the spectrum of a
particle in an infinite well. In this paper, we continue to build on this analysis, but here we
focus on finite wells and discuss the bound state energies and phase shifts due to scattering
from a finite two-dimensional, non-commutative well. This requires a careful analysis of
the matching conditions at a non-commutative boundary and the subsequent effect on the
coefficients of the non-commutative wavefunction, which forms a central part of the analysis
presented here. The motivation for this study is, first, to develop a clear understanding of
the mathematical structure of the theory and, second, the possible physical consequences
of non-commutativity, particularly in scattering data. Hopefully this can provide a guide
to the analysis of more realistic three-dimensional theories, which are considerably more
complicated due to the breaking of rotational invariance in non-commutative theories.

Although scattering has been studied rather extensively in the context of non-commutative
quantum field theories [4, 23], much less has been done on potential scattering in non-
commutative quantum mechanics in either two or three dimensions [24–26]. These few studies
depart from a leading-order expansion in the non-commutative parameter of either the Moyal
product or Bopp-shifted formulation of the Schrödinger equation. This is sufficient for studying
analytic potentials, but fails in the case of the well. Furthermore, the commuting coordinates
introduced in this approach do not have a clear physical meaning, which complicates the
physical interpretation of these results. In contrast, the approach followed here allows an
exact, albeit numerical, computation of bound state energies, phase shifts, differential and
total scattering cross-sections. Furthermore, the computation is interpreted within the fixed
framework set out in [20].

To fix the notation and basic concepts, it is useful to start with a brief review of the
formalism of non-commutative quantum mechanics as described in detail in [20]. The
coordinates in non-commutative configuration space obey the following commutation relation,

[x̂, ŷ] = iθ, (1)

where θ is real and without loss of generality can be taken to be positive. Introducing creation
and annihilation operators b† and b,

x̂ =
√

θ

2
(b + b†) (2)

ŷ =
√

θ

i
√

2
(b − b†), (3)

establishes an isomorphism between the non-commutative configuration space, Hc, and boson
Fock space,

Hc = span

{
|n〉 ≡ 1√

n!
(b†)n|0〉

}n=∞

n=0

, (4)

where the span is over complex numbers. The space of physical states is represented by what
we refer to as the quantum Hilbert space, Hq . This space consists of the Hilbert–Schmidt
operators acting on the non-commutative configuration space,

Hq = {ψ̂(x̂, ŷ) : ψ̂(x̂, ŷ) ∈ B(Hc), trc(ψ̂(x̂, ŷ)†, ψ̂(x̂, ŷ)) < ∞}, (5)

where trc denotes the trace over the non-commutative configuration space and B(Hc) indicates
the set of bounded operators on Hc. The inner product on this space is the trace inner product

(φ̂(x̂1, x̂2), ψ̂(x̂1, x̂2)) = trc(φ̂(x̂1, x̂2)
†ψ̂(x̂1, x̂2)). (6)
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We denote the elements of this space by ψ̂(x̂, ŷ) ≡ |ψ̂) and the elements of its dual (linear
functionals) by (ψ̂ |, which maps elements of Hq onto complex numbers by (φ̂|ψ̂) = (φ̂, ψ̂) =
trc(φ̂(x̂1, x̂2)

†ψ̂(x̂1, x̂2)).
The non-commutative Heisenberg algebra in two dimensions reads

[x̂i , p̂j ] = ih̄δi,j , [x̂i , x̂j ] = iθεi,j , [p̂i , p̂j ] = 0. (7)

A unitary representation of this algebra in terms of operators X̂i and P̂i acting on the quantum
Hilbert space is given by

X̂iψ̂(x̂1, x̂2) = x̂i ψ̂(x̂1, x̂2),

P̂iψ̂(x̂1, x̂2) = h̄

θ
εi,j [x̂j , ψ̂(x̂1, x̂2)],

(8)

i.e., the position acts by left multiplication and the momentum adjointly. We use capital
letters to distinguish operators acting on quantum Hilbert space from those acting on non-
commutative configuration space. It is also useful to introduce the following quantum operators
(in what follows † refers to the Hermitian conjugation on the quantum Hilbert space):

P̂ = P̂1 + iP̂2, P̂ † = P̂1 − iP̂2. (9)

We note that P̂ 2 = P̂ 2
1 + P̂ 2

2 = P †P = PP †. These operators act as follows:

P ψ̂(x̂1, x̂2) = −ih̄

√
2

θ
[b, ψ̂(x̂1, x̂2)], (10)

P †ψ̂(x̂1, x̂2) = ih̄

√
2

θ
[b†, ψ̂(x̂1, x̂2)]. (11)

This quantum system is interpreted within the usual set of axioms of commutative quantum
mechanics with the simple replacement of L2 by Hq . Only position measurement requires the
slight, yet well-established, generalization of positive operator-valued measures, which we
now briefly review.

In [20] it was shown that the following operators provide a positive operator-valued
measure on the quantum Hilbert space:

πz = 1

2πθ
|z) e

←
∂z̄

→
∂z (z|. (12)

Here |z) = |z〉〈z| with |z〉 being the coherent state

|z〉 = e−zz̄/2 ezb† |0〉. (13)

The probability of finding the particle at position (x1, x2), given that the system is described
by the pure state density matrix ρ = |ψ̂)(ψ̂ | is then

P(x1, x2) = trq(πzρ) = (ψ̂ |πz|ψ̂) = 1

2πθ
(ψ̂ |z) e

←
∂z̄

→
∂z (z|ψ̂). (14)

This naturally leads us to interpret (z|ψ̂) = 〈z|ψ̂ |z〉 as the wavefunction of the non-
commutative system.

This paper is organized as follows. We start by giving a brief description of the
construction of a non-commutative well. We then move on to the non-commutative
wavefunction and explain how one connects the different parts of the wavefunction at the
boundary of the well. An important section then follows on the relationship between
the Fock space representation and the wavefunction. We then turn to some applications
of the non-commutative formulation of quantum mechanics by calculating some bound states
and phase shifts as well as the total cross-section for the non-commutative well.
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2. The non-commutative well

One of the most famous statements in physics is undoubtably Heisenberg’s uncertainty
principle. It prevents you from knowing the simultaneous position and momentum of a
particle with arbitrary accuracy. This stems from the fact that, in quantum physics, position
and momentum no longer commute. This leads to an interesting complication when doing
non-commutative quantum mechanics: how does one define a non-commutative well?

Since the x- and y-coordinates no longer commute, we see that, in the spirit of the
uncertainty principle, we can no longer specify that the potential, as a function of the
coordinates, has a certain value at a specific boundary.

We can solve the problem of defining a potential well in a non-commutative space by using
projection operators [21]. Using the mathematical tools described in [21], each projection
operator specifies one region of constant potential. Therefore, in the case of a single well, we
would have

P =
N∑

n=0

|n〉〈n| (15)

Q =
∞∑

n=N+1

|n〉〈n| (16)

Q = 1 − P. (17)

Using these projection operators a piecewise constant potential (here a well) is simply defined
as

V̂ = V1 P + V2 Q, (18)

where V1 and V2 are constants.
We see that if we define r̂2 ≡ x̂2 + ŷ2 = θ(2b†b + 1), the radius of the well is defined

by N according to R2 = θ(2N + 1). It is immediately clear from this expression that the
radius (and hence also the area) of the potential is quantized in units of θ . This quantization
of the area of the potential in terms of θ is, of course, what drives any departure from normal
commutative physics. However, it is important to note that this effect becomes weaker as θ

becomes smaller and should go over to the commutative case in the limit of θ → 0. For the
potential well, this has already been checked in [21] and this paper will focus more on some
of the departures from the commutative scenario for finite values of θ .

As with its commutative counterpart, the non-commutative potential well is a conceptually
simple system, which already allows us to investigate a number of differences that non-
commutativity brings. The examples discussed in this paper include how bound states are
influenced and changes to the phase shifts during time-independent scattering.

2.1. Wavefunction

The wavefunction in a constant potential obeys the following Schrödinger equation,

P̂ 2ψ̂ = k2h̄2ψ̂, (19)

where k2 = 2μ(E − V )/h̄2, V constant.
As elaborated in [20] and the discussion above, the quantity (z|ψ̂) = 〈z|ψ̂ |z〉 plays the

role of the wavefunction. As such it plays a central role in the scattering theory developed
later, and we would like to find the differential equation obeyed by it. We therefore construct

〈z|P̂ 2ψ̂ |z〉 = k2h̄2〈z|ψ̂ |z〉 = k2h̄2(z|ψ̂). (20)

4
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Consider the LHS of (20). From the definition of the momentum operator [20, 21],

〈z|P̂ 2ψ̂ |z〉 = 2h̄2

θ
〈z|[b†, [b, ψ̂]]|z〉. (21)

To write this as a differential equation, we use the following identities,

b|z〉 = z|z〉, (22)

〈z|b† = z̄〈z|, (23)

b†|z〉 =
(

∂

∂z
+

1

2
z̄

)
|z〉, (24)

〈z|b = 〈z|
⎛
⎝ ←

∂

∂z̄
+

1

2
z

⎞
⎠ , (25)

where the arrow over the partial derivative indicates differentiation to the left. After some
algebra one obtains

〈z|b†[b, ψ̂] − [b, ψ̂]b†|z〉 = − ∂

∂z

∂

∂z̄
〈z|ψ̂ |z〉 = − ∂

∂z

∂

∂z̄
(z|ψ̂). (26)

We therefore find that the non-commutative wavefunction obeys

− ∂

∂z

∂

∂z̄

(
z|ψ̂) = θk2

2
(z|ψ̂). (27)

Putting (z|ψ̂) = ψ(z, z̄) and transforming into variables x and y, where z = x + iy, leads to

−
(

∂2

∂x2
+

∂2

∂y2

)
ψ(x, y) = 2θk2ψ(x, y), (28)

which is the standard Schrödinger equation.
At this point, it would be natural to wonder why one would even bother with non-

commutativity if the wavefunction is the same as in the commutative case. Indeed, it is well
known (see e.g. [22]) that introducing non-commutativity changes nothing for a completely free
particle. However, in the presence of a potential non-commutativity has physical consequences
and in particular for the non-commutative well these differences arise from the matching
conditions that need to be satisfied at the boundary of the two (or more) regions of constant
potential, which are quite different from the commutative case. We discuss these matching
conditions in the following section.

2.1.1. Matching conditions. Finding the matching conditions of the wavefunctions in the
different regions of the non-commutative well starts out similarly to the commutative case.
Here the Schrödinger equation is given by

P̂ 2

2μ
ψ̂ + (PV1 + QV2)ψ̂ = Eψ̂. (29)

We construct two solutions of the Schrödinger equation at the same energy for the two different
values of the potential,

P̂ 2

2μ
ψ̂1 + V1ψ̂1 = Eψ̂1 (30)

5
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P̂ 2

2μ
ψ̂2 + V2ψ̂2 = Eψ̂2. (31)

However, instead of requiring that the solutions and their derivatives match at the boundary,
we require that a consistency equation be satisfied. The details of deriving this equation can
be found in [21]. If we suppose that the full solution ψ̂ is given by

ψ̂ = P ψ̂1 + Qψ̂2, (32)

and we substitute (32) into (29), we obtain

P̂ 2

2μ
(P ψ̂1 + Qψ̂2) + (V1P ψ̂1 + V2Qψ̂2) = EPψ̂1 + EQψ̂2. (33)

Setting 
 = [P̂ 2, P ] and multiplying (30) by P and (31) by Q from the left shows that (32) is
a solution provided that


ψ̂1 = 
ψ̂2. (34)

This is the consistency equation that determines the matching conditions. By using the
definition (15) of P, the action of b and b† on the harmonic oscillator states and taking the
inner product of 
ψ̂1 and 
ψ̂2 with 〈N | and |�〉, it has been shown in [21] that (34) is written
more suggestively as

〈N + 1|ψ̂1|� + 1〉 = 〈N + 1|ψ̂2|� + 1〉 (35)

〈N |ψ̂1|� − 1〉 = 〈N |ψ̂2|� − 1〉. (36)

For subsequent discussions where we calculate things numerically, we typically look
at sectors with fixed angular momentum. In [21] the form of ψ̂ for a specific value of
angular momentum, namely ψ̂m, was touched on very briefly. We now explicitly construct
the eigenstates ψ̂m of the angular momentum operator. By considering [20] the operator that
generates rotations around the z-axis, the angular momentum operator was derived as

L̂z =
√

θ

2
(b + b†)P̂y + i

√
θ

2
(b − b†)P̂x +

θ

2h̄
P̂ 2. (37)

We can write the operator ψ̂ generally as (see [21])

ψ̂ =
∞∑

k=0

∞∑
�=0

ak,�(b
†)kb� =

∞∑
m=−∞

ψ̂m, (38)

where

ψ̂m =
∞∑

k=0

ak,k+m(b†)kbk+m, m � 0. (39)

Using (8), (10) and (11) we can calculate the action of the angular momentum operator on
ψ̂m:

L̂z ψ̂m = −h̄[b†b, ψ̂m] = h̄m ψ̂m. (40)

We therefore conclude that ψ̂m correspond to partial waves with angular momentum m. For
these ψ̂m the matching conditions become

〈N + 1|ψ̂1,m|N + m + 1〉 = 〈N + 1|ψ̂2,m|N + m + 1〉 (41)

〈N |ψ̂1,m|N + m〉 = 〈N |ψ̂2,m|N + m〉, (42)

and these will be those used predominantly during numerical calculations.
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On a side note, in the discussion leading up to here we worked under the assumption that
m is positive or zero. The mathematics in the case where m < 0 is the same as that of positive
m and is not discussed in this paper. One difference worth mentioning though is that, unlike
positive m, there is a cut-off for negative m in the form of |m| � N [21]. This asymmetry
between m > 0 and m < 0 is caused by an implied parity violation in the commutator of x̂

and ŷ due to the choice of the sign of θ and the fact that the commutator is not symmetric
under parity transformations. The asymmetry can also be understood from the point of view
of time reversal symmetry breaking as discussed in [20].

2.1.2. Relation between 〈z|ψ̂ |z〉 and 〈n|ψ̂ |n + m〉. In the previous sections we have seen
two important things, namely that the non-commutative wavefunction, (z|ψ̂), obeys a normal
commutative-type Schrödinger equation and that the correct manner in which to match the
various parts of ψ̂ at potential boundaries is to use the matching conditions in terms of the
oscillator basis states. Knowing that the non-commutative wavefunction is essentially a plane
wave when the potential is constant and that we can use all the standard tools such as partial
wave expansions is of course very useful when we want to calculate phase shifts, for example.
However, as we have just seen, the coefficients of these partial waves will all come from the
matching conditions which are given in the oscillator basis. It is therefore crucial that we can
convert what we know in the oscillator basis into the position basis.

To find how the two bases on classical configuration space are related to each other, we
start by looking at the expansion of a general operator over the coherent states [27],

Â =
∫

dz a(z)|z〉〈z|. (43)

With some algebra it can be shown that a(z) can be written as

a(z) = 1

π
e− ∂2

∂z∂z̄ 〈z|Â|z〉. (44)

Taking Â = ψ̂m we see that the above equation simplifies dramatically, since 〈z| ψ̂m |z〉 is an
eigenfunction of the − ∂2

∂z∂z̄
operator as we saw in section 2.1. Therefore,

− ∂2

∂z∂z̄
〈z|ψ̂m|z〉 = θk2

2
〈z|ψ̂m|z〉 (45)

⇒ψ̂m = 1

π
e

θk2

2

∫
dz 〈z|ψ̂m|z〉|z〉〈z|. (46)

Taking then the general matrix element in the oscillator basis gives

〈n|ψ̂m|�〉 = 1

π
e

θk2

2

∫
dz 〈z|ψ̂m|z〉〈n|z〉〈z|�〉. (47)

Transforming 〈z|ψ̂m|z〉 into polar co-ordinates, z = r eiφ , and using 〈n|z〉 = e− |z|2
2

zn√
n!

gives
us

7
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〈n|ψ̂m|�〉 = 1

π
e

θk2

2

∫
dφ drr eimφ(A Jm(

√
2θkr) + B Ym(

√
2θkr)) e−r2 rn einφ

√
n!

r�e−i�φ

√
�!

(48)

= e
θk2

2

π
√

n!
√

�!

∫ 2π

0
dφ ei(m+n−�)φ

︸ ︷︷ ︸
2πδ�,n+m

∫ ∞

0
dr rn+�+1 e−r2

× (A Jm(
√

2θkr) + B Ym(
√

2θkr)) (49)

⇒ 〈n| ψ̂m |n + m〉 = 2 e
θk2

2√
n!

√
(n + m)!

∫ ∞

0
dr r2n+m+1 e−r2

× (A Jm(
√

2θkr) + B Ym(
√

2θkr)). (50)

The integral over Jm is given in [28],∫ ∞

0
dr r2n+m+1 e−r2

Jm(
√

2θkr) = n!

2
e−wwm/2Lm

n (w), (51)

where w = θk2

2 .
Doing the integral over Ym is slightly more involved. We first look at the integral for

Yν = 1
sin(νπ)

(cos(νπ)Jν − J−ν) where ν ∈ R:∫ ∞

0
dr r2n+ν+1 e−r2

Yν(
√

2θkr)

= 1

sin(νπ)

⎡
⎢⎢⎢⎣cos(νπ)

wν/2

2

(n + ν + 1)

(ν + 1)
M(n + ν + 1, ν + 1,−w)︸ ︷︷ ︸

(a)

− w−ν/2

2

(n + 1)

(1 − ν)
M(n + 1, 1 − ν,−w)︸ ︷︷ ︸

(b)

⎤
⎥⎥⎥⎦ , (52)

where M(a, b, x) is the first solution of the confluent hypergeometric differential equation.
The substitutions (a) and (b) we have made required the evaluation of the following integrals,
the solutions of which can be found in [28]:

(a):
∫ ∞

0
dr r2n+ν+1 e−r2

Jν(
√

2θkr), (53)

(b):
∫ ∞

0
dr r2n+ν+1 e−r2

J−ν(
√

2θkr). (54)

We can now write our integral over Yν as∫ ∞

0
dr r2n+ν+1 e−r2

Yν(
√

2θkr) = −w−ν/2

2π
(n + ν + 1)(n + 1)

π

sin(νπ)
e−w

×
[
M(−n − ν, 1 − ν,w)

(n + ν + 1)(1 − ν)
− eiνπ + e−iνπ

2
wν M(−n, ν + 1, w)

(n + 1)(ν + 1)

]
(55)

8
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= − w−ν/2

4π
(n + ν + 1)(n + 1)

π

sin(νπ)
e−w

×
[
M(−n − ν, 1 − ν,w)

(n + ν + 1)(1 − ν)
− eiνπwν M(−n, ν + 1, w)

(n + 1)(ν + 1)

+
M(−n − ν, 1 − ν,w)

(n + ν + 1)(1 − ν)
− e−iνπwν M(−n, ν + 1, w)

(n + 1)(ν + 1)

]
(56)

= − w−ν/2

2π
(n + ν + 1)(n + 1)

×
[

1

2
U(n + 1, 1 − ν,w eiπ ) +

1

2
U(n + 1, 1 − ν,w e−iπ )

]
, (57)

where we used M(a, b, x) = exM(b − a, b,−x) in the first line and the analytic continuation
of U to get to the last line (see [29]). The notation w e±iπ denotes evaluation just above (+)
or just below (−) the negative real axis, which is the branch cut for the function U. For real
values of w, the sum of the U’s in the last line simplifies to Re[U(n + 1, 1 − ν,−w)]. U is
defined even in the limit of ν → m, where m is an integer, so this also solves our original
integral for Ym. Putting everything together we find

〈n|ψ̂m|n + m〉 = A

√
n!√

(n + m)!
wm/2Lm

n (w)

−B

π

√
n!(n + m)! eww−m/2 Re[U(n + 1, 1 − m,−w)]. (58)

We remark that in [21] the matrix elements 〈n| ψ̂m |n + m〉 were solved using recursion
relations. The result obtained was

〈n|ψ̂m|n + m〉 = c1(m,−w)

√
m!n!

(n + m)!
Lm

n (w)

+ c2(m,−w)

√
n!(n + m)!

m!
U(n + 1, 1 − m,−w). (59)

This result is actually only valid when U(n + 1, 1 − m,−w) is real, i.e. w < 0, as is the case
for bound states studied in [21]. For scattering states, the correct form to use is (58). In the
former case, we therefore have a simple way of relating the two sets of coefficients, c1 and c2

and A and B by comparing (58) and (59):

A =
√

m! w−m/2c1(m,−w) (60)

B = − π√
m!

wm/2 e−wc2(m,−w). (61)

2.2. Bound-state energies

In this section, we come to the first application of the non-commutative ideas described in
this paper. To find the bound states in the commutative case, one would first solve the
Schrödinger equation in the inner and outer regions of the well. Inside one obtains a linear
combination of the Bessel functions Jm and Ym. Realizing that Ym is singular at the origin one
then sets its coefficient to zero. Similarly, outside one has a linear combination of Im and Km,
but due to the exponentially growing nature of Im its coefficient is also chosen as zero. In
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Figure 1. Commutative and non-commutative bound state energies for a well of depth V = 6 with
a radius of

√
20. N was chosen as 10. Symbols which are the same indicate the same energy level,

i.e. diamonds indicate the ground state, stars the first excited state, etc. Connected symbols are the
commutative energies and unconnected ones indicate the non-commutative energies.

the non-commutative case, we have seen that the general form of 〈n|ψ̂m|n + m〉 is a linear
combination of a Laguerre polynomial Lm

n and a confluent hypergeometric function U. Since
the non-commutative wavefunction has the same form as it does commutatively, namely a
linear combination of Jm and Ym inside the well and of Im and Km outside the well, we see that
the same restrictions on the coefficients apply in the non-commutative case. By looking at
the derivation of (58) we see that these restrictions imply that the coefficient of U inside the
well and the coefficient of Lm

n outside the well must be zero. The same result can be found by
looking at the commutative limit of 〈n|ψ̂m|n + m〉 (see [21]).

In the commutative case, one would then match up Jm and Km and their derivatives at the
boundary and solve for the energy. Using what we have just said about the coefficients in the
non-commutative case, the matching conditions (41) and (42) reduce to

Lm
N+1(θE)

Lm
N(θE)

= (N + m + 1)
U(N + 2, 1 − m, θ(V − E))

U(N + 1, 1 − m, θ(V − E))
, (62)

where we have taken μ = h̄ = 1 and divided (41) by (42). This equation then gives us the
bound state energies for a non-commutative well of depth V in the angular momentum sector
m. In this paper, these energies were found by graphically inspecting the LHS and RHS of
(62) and then searching numerically near these values.

In figure 1, we show some numerical results for both positive and negative angular
momentum. We see that the energy of a positive m bound state is always lower than the
corresponding commutative one and that the opposite is true for negative m. This leads to
there being more bound states for some m than is the case commutatively. Once again the
opposite is true for m < 0. One thing to keep in mind is that θ is large

(
θ = 20

21

)
in this

calculation. For realistic values of θ , which are extremely small, the split in energy between
positive and negative m becomes very small as well and hence also the chance of seeing a
lost or gained bound state. The graph also shows that non-commutative bound state energies
differ more and more from their commutative counterparts as |m| increases in relation to N.
Choosing N too large will therefore not always allow us to see where the non-commutative

10
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changes come in. As we mentioned very briefly in section 2.1.1 |m| cannot be larger than N
for negative m and this is clearly visible in figure 1.

2.3. Scattering

In this section on scattering, we considered only time-independent scattering. In the part that
covers phase shifts, we briefly describe how the phase shifts were calculated and then show
some results. Once we have done that we use the calculated phase shifts to find the total and
differential scattering cross-section.

2.3.1. Phase shifts. Let us look briefly at the commutative case. Since the range of most
scattering potentials is finite (which is certainly the case for a well), a particle being scattered
from such a potential is essentially free most of the time. If we were to split the particle’s
wavefunction into an incoming and outgoing part, we could include the effect of a scattering
potential on the particle by adding a phase shift to the outgoing wave. The reason it is only a
phase shift is to preserve unitarity. In the case of a well, however, we can of course solve the
Schrödinger equation everywhere. We can then compare this exact solution to the free particle
plus phase shift wavefunction at large distances from the potential and obtain an equation for
the phase shift in terms of the coefficients of the exact solution. In terms of radial co-ordinates,
the exact wavefunction outside the well (for a specific m) is given by

ψm = AJm(kr) + BYm(kr), (63)

where k2 = 2μ

h̄2 (E − V ). All this then leads to the well-known equation for the phase shift δm

tan δm = −B

A
. (64)

One important message this paper tries to convey is that we are constantly working
with two parallel pictures when dealing with non-commutativity. On the one hand, we
have the position representation (z|ψ̂) of ψ̂ , which is very similar mathematically to the
commutative case and helps us think about how certain calculations should be done in the non-
commutative case, since the analogy is so clear. On the other hand, we have the description of ψ̂

in the oscillator basis which differs substantially from how one does things commutatively,
but is the natural basis in the description of the well. So, whereas one would find A and
B by matching the wavefunctions and their derivatives inside and outside the well at the
boundary in the commutative case, we have a two-step process in the non-commutative case.
The first step involves the position representation, where we realize that the non-commutative
wavefunction has the same form as is the case commutatively and we can also make a partial
wave expansion. This allows us to follow the same arguments and to arrive at the same
equation (64) for the phase shifts. The second step involves the oscillator basis, where we can
explicitly calculate the coefficients A and B from the non-commutative matching conditions
(41), (42) and equation (58) derived in section 2.1.2.

The results of such a calculation are shown in figures 2(a) and (b). As expected,
the correspondence between commutativity and non-commutativity improves as θ becomes
smaller. There are however some deviations near E = 13 in figure 2(c) and near E = 21 in
figure 2(b) (though these are not the only places where this occurs). These figures would
then seem to suggest that there are points where convergence of the non-commutative case
to the commutative one is slower. The physical origin of these large deviations in the non-
commutative case is not yet understood, but it is hoped that further investigation will reveal
the underlying reason as well as pointing to a concrete place to search for non-commutativity
in an experiment.
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Figure 2. Tangent of the phase shift for the commutative (solid line) and non-commutative (dashed
line) cases in the m = 4 sector. In all three figures, the well height was V = 10 and the radius was
R = √

20. (a) and (b) are the same except that in the former case N = 10 (θ = 20
21 ) and in the

latter N = 1000 (θ = 20
2001 ). (c) is a close up view of (b) over the first six units of energy.

2.3.2. Total scattering cross-section. The formula for the differential scattering cross-section
in two dimensions is very similar in both form and derivation to that of three dimensions, and
we will not go into detail (see [30]) here. For our purposes, we will simply use the following
(commutative) formulae,

dσ

dφ
= 1

k
|fk(φ)|2 (65)

fk(φ) =
√

2

π

∞∑
m=0

εm cos(mφ)eiδm sin(δm) where ε0 = 1, εm�1 = 2 (66)

σ =
∫ 2π

0
σ(φ) dφ = 4

k

∞∑
m=0

εm sin2(δm), (67)

where k2 = 2μ

h̄2 (E − V ), dσ
dφ

is the differential scattering cross-section, fk(φ) is the scattering
amplitude and σ is the total scattering cross-section.

Due to the chosen values of N in figures 3(a) and (b), we have that θ = 20
21 in figure 3(a)

and θ = 20
2001 in figure 3(b). As one can see, the non-commutative cross-section agrees much

better with the commutative one as θ becomes smaller. This is of course what one would
expect, since the non-commutative case must go over into the commutative one as θ → 0. Not
shown in the graph is that the cross-section goes to infinity as the energy approaches the well
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Figure 3. Total scattering cross-sections. Energy ranges from just above the well to 50 units higher.
The well height was V = 10 and the radius was R = √

20. For (a) N = 10 and for (b)
N = 1000. The solid line indicates the commutative cross-section, whereas the dots indicate the
non-commutative values. For (c) and (d) N = 1000. In (c) and (d) we have plotted the contribution
to the total cross-section for angular momentum, m = 4, only. (c) displays the cross-section over
the first 25 units of energy and (d) is a close up view for energies between 19 and 23. For (c) and (d)
the solid line indicates the commutative case, and the dots/triangles indicate the non-commutative
case.

height, i.e. k → 0, in both the commutative and non-commutative cases due to 1
k

appearing in
the total cross-section. Figure 3(c) shows the contribution to the total cross-section from the
m = 4 angular momentum sector, where figure 3(d) is a close up view of 3(c) near 20 units of
energy. The deviations from the commutative case occur where the phase shifts differ as we
saw in figures 2(b) and (c). In both graphs, we see that there is a slightly lower contribution
to the cross-section in the non-commutative case.

3. Conclusion

We have used the non-commutative formalism set out in [20] and the definition of the non-
commutative well [21] to calculate bound state energies, phase shifts and the total cross-section
of such a well. A more rigorous (than that used in [21]) derivation of the relation between
the position and Fock space representations of ψ̂ was also given for use when calculating
matching conditions in the scattering region. In the numerical results for the bound states
we observed a splitting in the energy of states with negative and positive angular momentum
caused by non-commutativity. In the case of phase shifts and the total cross-section, we saw
that the non-commutative results converge toward the commutative ones in the limit of θ → 0.
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However, from the data on phase shifts we saw that the convergence is not uniform for all
energies. We note that mathematically the limit θ → 0 is similar to the quasi-classical limit
h̄ → 0, which is known not to be smooth in general. The physical origin of this is, however,
not yet fully understood and bears more investigation.
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